

Forecasting:

Began forecasting ozone for Metro Area in 1996.

Began forecasting PM2.5 for Metro Area in 2003.

Forecasting Program

- Team consists of meteorologists and air quality modelers from Georgia EPD and Georgia Tech.
- Forecasting Tools:
- a. Multiple Linear Regression Model, Decision-Tree, Close Neighbor Models
- b. UAM (3D clear-sky)
- c. Meteorological and Chemical Data
- d. NWS Synoptic Models (GFS,ETA....)

Methodology:

Consensus Component, Submit forecast at 1330 LST.

(Discussion with NC and SC)

ATLANTA FORECASTING TEAM

O3 PREDICTIONS
Successful predictions (1999-2003)

Binary	AQI #Viol
83.7%	53.6% 69
81.7%	58.2% 46
86.9%	63.4% 20
84.3%	66.0% 37
93.3%	67.8% 13

- PM2.5 PREDICTIONS
- Successful predictions (Oct 2003 -Jan 2004)
- Year AQI Category
- -----
- **2003** 76.1%
- **2004** ?? (1 Viol)

Metro Ozone Network

GA PM2.5 Network

PM2.5 and O3 Episode (8/19/03)

Recirc at Douglasville (NW to SE flow)

PA1-LR 500,1000m WDR

FFC Sounding 8/19/03

Surface data plot for 12Z 19 AUG 03 177₅₆0178 61 77653 219 84 169

50

45

Fronts at 12Z

Intensities (Dbz): 201

30

500 mb Heights (dm) / Temperature (°C) / Humidity (%)

500 mb Heights (dm) / Abs. Vorticity (x10⁻⁵ s⁻¹)

Yorkville and Macon PM2.5 8/19/03-8/20/03

METEOGRAM

Conclusion

- Ozone increase at Douglasville was primarily due to recirculation.
- Concurrent PM2.5 increase at Yorkville was due to multiple inversions, slow evolution of mixing height, and light boundary layer winds.
- Macon PM2.5 levels were affected by front and afternoon convection.
- Broad upper level ridge was dominant synoptic feature for this O3 and PM2.5 episode.

Future:

LIDAR and SODAR will be useful in probing evolution of mixing height and capturing smaller-scale recirculation episodes.

Understanding strength of nocturnal inversion and early morning cap is critical concerning O3 and PM2.5 interplay.

The End